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at  every position of the plate displaced vertically, the 
collimator slits being 1 ram. wide and 3 ram. high. 
The result is given in Fig. 3. While the difference in 
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Fig. 3. The intensity of reflexion from net planes perpendicular 
to the boundary, showing no intensity anomaly at the 
boundary. 

intensity of reflexions from the etched and unetched 
areas is shown clearly, the boundary effect was not  
observed. 

6. In  the case of Bragg surface reflexion, using the 
various specimens mentioned at  the beginning, no 
anomaly was found at  the boundary. 

The present author (Fukushima, 1935a, b, 1936) has 
measured the intensity of transmitted reflexion from 

different parts of a quartz plate to which a mechanical 
stress was-applied. In  seeking a relationship between the 
extent of the reduction in the extinction and the distribu- 
tion of the strain generated in the plate, the author came 
to the conclusion tha t  the reduction in the extinction 
effect is proportional to the gradient of the strain and 
not to the strain itself. In  view of these investigations 
and the inadequacy of supposing, in the present case, 
a zone of especially strong mechanical stress (refer to (5)) 
or a step structure produced by etching at  the boundary,  
the following seems to be a reasonable explanation of the 
present experiments. At the boundary between the etched 
and unetched areas there exists a zone of fairly large strain 
gradient in a direction parallel to the surface and per- 
pendicular to the boundary. The existence of such a zone 
is the cause (through a reduction of the extinction effect) 
of the anomalous increase of the intensity of X-ray 
reflexion from the net planes at  the boundary and 
perpendicular to the above-mentioned gradient. From 
this point of view the results of the apparent non-existence 
of the enhancement in the experiments (5) and (6) is 
explained by assuming tha t  the strain gradient does not  
exist, or is small, in the directions perpendicular to the 
above-mentioned direction of large gradient. 
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In  this note a rapid and efficient method of locating 
maxima of Patterson and electron-density maps is 
described. I t  is assumed (as is implicit in Booth's treat- 
ment (Booth, 1948)) that a peak resembles an elliptic 
paraboloid near the maximum. In  addition to locating 
the maximum, the procedure outlined below gives in- 
formation concerning the shape of the contours near the 
maximum and the directions of steepest and most shallow 
descents. The method avoids graphical procedures (e.g. 
Carpenter & Donohue, 1950) or extensive least-square 
methods (Shoemaker, Donohue, Schomaker & Corey, 
1950). 

I t  is assumed tha t  the Fourier function (i.e. the 
Patterson or electron-density distribution) has been 
evaluated at  the points of a net having grid lines parallel 

to crystallographic directions X '  and Y'. The grid lines 
are separated by some convenient interval (usually 
1/60 or 1/120 of the unit  cell dimensions). Par t  of this net 
is shown in Fig. 1. Th0 value of the Fourier function at 
each point (x', y') of the net is designated by Z(x', y'). 
Let the highest value of Z(x', y') be called Z(0, 0). The 
true maximum of the Fourier function will lie close to 
(0, 0). A good approximation of its true loc~tion can be 
determined from the value of Z(0, 0) and the values of 
the eight surrounding points indicated in Fig. 1. 

For convenience in studying the shape of the elliptic 
paraboloid tha t  will be fitted to these nine points, the 
location of the maximum will be determined with respect 
to an orthogonal Cartesian coorcl~nate system X, Y which 
is defined as follows: The X axis is collinear with the X, 
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axis ;  the Y axis is perpendicular  to the X axis. Distances 
measured along the X axis are equal to distances measured 
along the X '  axis. 
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Fig. I. 

The values of the Four ier  funct ion are now used to 
obta in  the coefficients of the equat ion of an  elliptic 
paraboloid 

Z(x,  y) ----- A x 2 + B y 2 - F C x y + D x - I - E y + F  (1) 

in the X,  Y coordinate system. 
To t ransform informat ion from the general (planar) 

coordinate sys tem based on the net  to the or thogonal  
Cartesian coordinate sys tem t h a t  has been introduced,  
the following quant i t ies  are defined: 

K is the rat io of the repeat  distances of the net,  i.e. 
(distance between adjacent  points  along Y') : (distance 
between adjacent  points  along X') .  If  the ne t  was formed 
b y  tak ing  two equal intervals  along crystal lographic 
directions, say  a and  b, then  K ---- b/a. 

y is the angle between the posit ive directions of X '  
and  Y' .  

Let  s = K c o s ~ ,  and  t - - - - K s i n ~ .  (2) 

Using the above definitions, the  coefficients of equat ion 
(1) are found to be:  

where 

F = Z(0 ,  0 ) ,  

A = ½{Z(1, 0)+Z(T,  0 ) } - - F ,  

D = ½{Z(1, o)-z(L 0)}, 

E -- ½{Z(0, 1)--Z(0, i ) - - 2 s D } / t ,  

C----- ~ { g - - 4 s A } / t ,  

B = ½{Z(0, 1 )+Z(0 ,  1) - -2F- -2s~A- -2s tC} / t  ~ , 

(3) 

g = Z(1, 1 )+Z(1 ,  1)--Z(T, 1 ) - Z ( 1 ,  i ) .  (4) 

In  determining these coefficients, we have seemingly 
used more information t han  is necessary, i.e. we have  
used the values of the Fourier  funct ion a t  nine points  to 

determine only six coefficients. In  using the addi t ional  
information we have  effectively averaged together  four 
paraboloids;  a t  the  same t ime a more symmetr ic  a r ray  
of da ta  was used. The use of a n y  one of the four diagonal 
terms Z ( ± I ,  ±1)  leads to a set of six coefficients. B y  
using all four (see equat ion (4)) the averaging is effected. 

The coordinates of the m a x i m u m  of the elliptic para- 
boloid in equat ion (1) are found by  the usual  me thod  of 
equat ing  the x and  y par t ia l  derivat ives of Z(x,  y) to zero, 
and  solving these equations s imul taneously  for x and y. 
The coordinates of the m a x i m u m  are:  

2 B D  -- C E  2 A E - -  CD 
Xmax.---- C 2 _ 4 A B  ; ymax .  C2__4AB • 

In format ion  about  the  shape of the peak is readi ly 
obtained. A plane ( Z - - c o n s t a n t )  cu t t ing  the approx- 
imated  peak,  intersects  the paraboloid in an  ellipse wi th  
center a t  Xmax., ymax.. The 'a' axis of this  ellipse, 

(X--Xmax.)2/a 2 Jr- (y--yraax.)2/b ~ = 1 , 

makes an  angle 0 wi th  the X direction, where 0 is given 
by :  

0 = ½ t a n - l { C / ( A - - B ) } .  

The eccentr ic i ty  of the ellipse e, is given b y  

e =  V{1-(b/a) ~} for b/a < 1; 

e =  ~ { 1 - ( a / b )  ~} for b / a >  1 ,  

where b/a is the rat io of the axes of the ellipse. This 
rat io in tu rn  is given by  

b/a = V ( A ' / B ' ) ,  
where 

A '  = ½A{1 -F (A--B)/v2}-t- ½B{1 -- (A --B)/v2} +½C2/v2, 

B '  = ½A{1--(A--B)/~v}-÷-½B{I +(A--B)/~vI--½C2/~v, 

and  
~2 = ~/{(A--B)2+C2} • 

In  refined electron-densi ty maps,  e can be correlated 
wi th  anisotropie vibrat ions of an  atom. 

For  the special case of orthogonal  nets,  all the  equat ions 
in (3) are much  simplified, since, for this  case, s----0 
a n d t  = K .  For  a square net,  s = 0, t = K =  1. 

In  practice,  if only the posit ion of the m a x i m u m  is 
sought,  the  mesh of the ne t  m a y  be approximated  to be 
square and  the appropriate  simplifications applied. I f  the  
angle 0 is close to 90 °, no serious error is introduced.  

R e f e r e n c e s  

BOOTH, A. D. (1948). Fourier  Technique in  X - r a y  Organic 
Structure Analys is .  Cambridge:  Univers i ty  Press. 

C~RPENTE~, G. B. & DONOHU~, J.  (1950). J .  Amer .  Chem. 
Soc. 72, 2315. 

SHOEMA]~ER, D . P . ,  DONOHV~., J . ,  SCHONIAKER, V. & 
COREY, R.  B. (1950). J .  Amer .  Chem. Soc. 72, 2328. 


